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Application Track

Homework 3

1. A simple spring between particles at x1 and x2 in 3D can be defined by the equations

F = m1

dv1

dt
F = −m2

dv2

dt
u =

∆x

‖∆x‖
F = −ks

(

‖∆x‖

x0

− 1

)

u − kd(∆v · u)u

v1 =
dx1

dt
v2 =

dx2

dt
∆x = x1 − x2 ∆v = v1 − v2. (1)

We would like to examine transformations under which these equations are invariant. That
is, consider the new quantities obtained by applying transforms of the form

x̂1 = A1x1 + b1 v̂1 = A2v1 + b2 F̂ = A3F + b3

x̂2 = A4x2 + b4 v̂2 = A5v2 + b5

m̂1 = α3m1 + β3 m̂2 = α4m2 + β4 t̂ = α5t + β5

x̂0 = α6x0 + β6 k̂s = α1ks + β1 k̂d = α2kd + β2

∆̂x = x̂1 − x̂2 ∆̂v = v̂1 − v̂2 û =
∆̂x

‖∆̂x‖

where Ai are non-singular matrices with positive determinant and αi are positive. All of the
matrices Ai, vectors bi, and scalars αi and βi are constants. That is, they do not depend
on t, x1, x2, or any of the other quantities that occur in (1). We also require that these
transformed quantities also satisfy

F̂ = m
dv̂1

dt̂
F̂ = −m̂

dv̂2

dt̂
u =

∆̂x

‖∆̂x‖
F̂ = −k̂s

(

‖∆̂x‖

x̂0

− 1

)

û− k̂d(∆̂v · û)û

v̂1 =
dx̂1

dt̂
v̂2 =

dx̂2

dt̂
∆̂x = x̂1 − x̂2 ∆̂v = v̂1 − v̂2. (2)

Find the most general possible transform. In particular, a transform is suitable if it has the
form above and every solution to (1) is transformed to a solution of (2).

Provide a physical interpretation for each of these degrees of freedom. That is, explain
why any physically meaningful force between two particles must be invariant under these
transforms, provided of course that its parameters are given suitable transform rules.

Finding the fully general set of transforms (there should be 10 degrees of freedom) and showing
that they are suitable is worth one point. Showing that any suitable transform has this form
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(and as a result that there are not more than 10 degrees of freedom) is worth a second point.
The physical intuition is worth a third point.

From A2v1 + b2 = v̂1 = dx̂1

dt̂
= 1

α5
A1

dx1

dt
= 1

α5
A1v1 we see that b2 = 0 and A2 = 1

α5
A1.

Similarly, A5 = 1

α5
A4. From A3F + b3 = F̂ = m̂1

dv̂1

dt̂
= 1

α2

5

A1(α3m1 + β3)
dv1

dt
= α3

α2

5

A1F +

β3

α2

5
m1

A1F we conclude that A3 = α3

α2

5

A1, b3 = 0, and β3

α2

5
m1

A1F = 0. Since A1 is nonsingular,

α5 is nonzero, and m1 and F are variable, it must be that β3 = 0. Similarly, one finds
A3 = α4

α2

5

A4 and β4 = 0 and consequently A4 = α3

α4
A1.

Consider a steady state solution, where v1 = v2 = F = ∆v = 0. Then, v̂1 = v̂2 = F̂ =
∆̂v = 0. Substituting into (1) and (2) we find x0 = ‖∆x‖ and x̂0 = ‖∆̂x‖. That is,
‖A1x1 +b1 −A4x2 −b4‖ = ‖∆̂x‖ = α6‖∆x‖+ β6 = α6‖x1 −x2‖+ β6. Consider setups with
x2 = 0 and ‖A1x1 + b1 − b4‖ = α6‖x1‖ + β6. From x1 → 0 we see that β6 = ‖b1 − b4‖.
Since A1 is invertible, we can choose a configuration with x1 = A−1

1 (b4 − b1), which gives
us 0 = α6‖A

−1
1 (b4 − b1)‖ + ‖b1 − b4‖. Since α6 > 0, we must conclude that b1 = b4. This

reduces the system to ‖A1x1‖ = α6‖x1‖. Squaring both sides we have xT
1 AT

1 A1x1 = α2
6x

T
1 x1

or xT
1 (AT

1 A1 − α2
6I)x1 = 0. Since x1 is arbitrary, AT

1 A1 = α2
6I. Thus, we conclude that

A1 = α6U, where U is an orthogonal matrix. Since A1 has positive determinant and α6 > 0,
we conclude that U is in fact a rotation matrix. If we repeat this with x1 = 0 instead, we find
A4 = α6U, which along with A4 = α3

α4
A1 implies α3 = α4.

Next, ∆̂x = x̂1− x̂2 = (α6Ux1 +b1)−(α6Ux2 +b1) = α6U(x1−x2) = α6U∆x and similarly

∆̂v = α6

α5
U∆v. Then, û = ∆̂x

‖∆̂x‖
= α6U∆x

‖α6U∆x‖ = U ∆̂x

‖∆̂x‖
= Uu.

We have so far now narrowed the transform possibilities to

x̂1 = α6Ux1 + b1 v̂1 =
α6

α5

Uv1 F̂ =
α3α6

α2
5

UF x̂2 = α6Ux2 + b1 v̂2 =
α6

α5

Uv2

m̂1 = α3m1 m̂2 = α3m2 t̂ = α5t + β5 x̂0 = α6x0 k̂s = α1ks + β1

k̂d = α2kd + β2 û = Uu ∆̂x = α6U∆x ∆̂v =
α6

α5

U∆v

At this point, we can take a look and see how close (1) and (2) are to matching up.

0 =
α3α6

α2
5

UF − F̂

= −
α3α6

α2
5

Uks

(

‖∆x‖

x0

− 1

)

u −
α3α6

α2
5

Ukd(∆v · u)u + k̂s

(

‖∆̂x‖

x̂0

− 1

)

û + k̂d(∆̂v · û)û

0 = −
α3α6

α2
5

ks

(

‖∆x‖

x0

− 1

)

u−
α3α6

α2
5

kd(∆v · u)u + k̂s

(

‖α6U∆x‖

α6x0

− 1

)

u + k̂d(
α6

α5

U∆v · Uu)u

0 = −
α3α6

α2
5

ks

(

‖∆x‖

x0

− 1

)

u−
α3α6

α2
5

kd(∆v · u)u + k̂s

(

‖∆x‖

x0

− 1

)

u + k̂d

α6

α5

(∆v · u)u

= −

(

α3α6

α2
5

ks − k̂s

)(

‖∆x‖

x0

− 1

)

u−

(

α3α6

α2
5

kd −
α6

α5

k̂d

)

(∆v · u)u

2



From this and the fact that at any particular time, ∆x and ∆v could be anything (this equation
must hold identically), one concludes β1 = β2 = 0, α1 = α3α6

α2

5

, and α2 = α3

α5
. Since the

equations are now equivelant, we know that the transforms that remain are suitable, and from
the derivation above we know that no more degrees of freedom are possible in such a transform.

The degree of freedom α6 corresponds to changing the units of length, α5 corresponds to
changing the units of time, and α3 corresponds to changing the units of mass. The three
degrees of freedom in b1 correspond to translation invariance. The three degrees of freedom
in U correspond to rotation invariance, and the degree of freedom β5 corresponds to time
invariance. That is, the behavior of a spring does not depend on its location, its orientation
(ignoring gravity), or when I examine the spring. Note that none of these depend in any
particular way on the special properties of a spring. The first three are an artifact of how
measurements are made, and the remaining seven are rather fundamental physical properties.

2. For each variable in (1), determine its SI units.

The quantities x1, x2, ∆x, and x0 are positions, displacement, and length and have units of
meters (m). The time t has units of seconds (s), and the masses m1 and m2 have units of
kilograms (kg). u is a unit vector and is unitless. v1, v2, and ∆v are velocities and have
units m s−1. F is a force and has units kg m s−2. From the spring equation, we see that F

has the same units ks, so it also has units kg m s−2. Finally, F has units of kd times ∆v, so
that kd has units kg s−1.

3. Show that the linear spring conserves mass, momentum, and angular momentum.

The mass is attached to the two particles, so it is trivially conserved. This is generally true of
Lagrangian simulations. The total momentum of the system is p = p1 + p2 = m1v1 + m2v2.
Then, dp

dt
= m1

dv1

dt
+ m2

dv2

dt
= F − F = 0. Since momentum does not change in time, it is

conserved. Consider the angular momentum about a fixed point o. The angular momentum
is L = L1 + L2 = (x1 − o) × p1 + (x2 − o) × p2.

dL

dt
=

d

dt
(x1 − o) × p1 + (x1 − o) ×

dp1

dt
+

d

dt
(x2 − o) × p2 + (x2 − o) ×

dp2

dt

= v1 × p1 + (x1 − o) ×
dp1

dt
+ v2 × p2 + (x2 − o) ×

dp2

dt

= m1v1 × v1 + (x1 − o) × F + m2v2 × v2 + (x2 − o) × (−F)

= ∆x× F

= ‖∆x‖u ×

(

−ks

(

‖∆x‖

x0

− 1

)

u− kd(∆v · u)u

)

= 0
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4. Show that the energy for a (well-posed) spring is in general decreasing and find the condition
a spring’s parameters must satisfy to conserve energy. The potential energy of the spring is
U = 1

2
ks

x0
(‖∆x‖ − x0)

2.

E =
1

2
m1‖v1‖

2 +
1

2
m2‖v1‖

2 +
1

2

ks

x0

(‖∆x‖ − x0)
2

dE

dt
= m1v1 ·

dv1

dt
+ m2v2 ·

dv2

dt
+

ks

x0

(‖∆x‖ − x0)
d

dt
‖∆x‖

= v1 ·F − v2 ·F +
ks

x0

(‖∆x‖ − x0)
∆x · ∆v

‖∆x‖

= ∆v · (F +
ks

x0

(‖∆x‖ − x0)u)

= ∆v ·

(

−ks

(

‖∆x‖

x0

− 1

)

u− kd(∆v · u)u + ks

(

‖∆x‖

x0

− 1

)

u

)

= −kd(∆v · u)2

If kd = 0, then the spring does not lose energy. Otherwise, kd > 0, and the energy change
is negative unless ∆v · u = ‖∆x‖−1 d

dt
‖∆x‖2 = 0. That is, a damped spring loses energy

whenever the spring’s length is changing.

5. Show that the center of mass of the system undergoes uniform translation. (That is, the
center of mass moves through space with constant velocity.)

The center of mass is = m1x1+m2x2

m1+m2
. Its change is d

dt
= m1v1+m2v2

m1+m2
= (m1 + m2)

−1p, which
is constant. Note that this is true whenever momentum is conserved.

6. Show that evolving (1) using forward Euler conserves mass and momentum but not angular
momentum.
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Mass is trivially conserved.

pn+1 = pn+1
1 + pn+1

2

= m1v
n+1
1 + m2v

n+1
2

= m1(v
n
1 + ∆t m−1

1 Fn) + m2(v
n
2 − ∆t m−1

2 Fn)

= (pn
1 + ∆tFn) + (pn

2 − ∆tFn)

= pn
1 + pn

2

= pn

Ln+1 = Ln+1
1 + Ln+1

2

= (xn+1
1 − o) × pn+1

1 + (xn+1
2 − o) × pn+1

2

= (xn
1 − o + ∆tvn

1 ) × (pn
1 + ∆tFn) + (xn

2 − o + ∆tvn
2 ) × (pn

2 − ∆tFn)

= (xn
1 − o + ∆tvn

1 ) × pn
1 + (xn

2 − o + ∆tvn
2 ) × pn

2 + ∆t(∆xn + ∆t∆vn) × Fn

= (xn
1 − o) × pn

1 + (xn
2 − o) × pn

2 + ∆t2∆vn × Fn

= Ln + ∆t2∆vn × Fn

Thus, angular momentum fails to be conserved when there is motion out of the spring direc-
tion. Note that the error goes away under refinement.
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