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Application Track

Homework 1

1. Use conservation of mass to show that the sum of the outward-facing area-weighted normals
of a triangle mesh must be the zero vector.

Let ρ > 0 and u 6= 0 be a constant-density and constant-velocity fluid surrounding and flowing
through this triangle mesh. The weak form of conservation of mass is

∂

∂t

∫

Ω

ρ dV = −

∫

∂Ω

(ρu) · dS

∂

∂t

∫

Ω

dV = −

∫

∂Ω

u · dS

0 = −u ·

∫

∂Ω

dS

0 = −u ·
∑

k

∫

Tk

dS

0 = −u ·
∑

k

nk

where Tk are the triangles, and nk is the area-weighted, outward-facing normal of Tk. Since
u is arbitrary, it follows that

∑

k

nk = 0.

2. The strong form conservation of mass in an Eulerian frame can be written as ρt+ρxu+ρux = 0.
For each of the three terms:

(a) Provide a physical description of what the term means,

The ρt term describes how the density of a fixed point in space changes with time. The
uρx term describes how mass advects (moves around) with the velocity field. The ρux

term describes how mass compresses and expands in the velocity field.
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(b) Describe a physical situation in which that term is identically zero in a region while the
other two terms remain nonzero, and

If ρt = 0, then ρ is constant in time. Further, u and ρ must be spatially varying so that
the second and third terms do not vanish. This would occur, for example, when air is
forced through a nozzle and is in steady state.

If uρx = 0, then either u = 0 or ρx. If u = 0 over a region of space, then ux = 0, which
makes the third term vanish as well. Thus, ρx = 0, and the density profile is spatially
constant and time varying (to prevent the first term from vanishing). This situation
would occur, for example, when a tire is being (slowly) filled with air.

If ρux = 0, then ux = 0, which implies that the velocity is spatially constant. That is,
the fluid is simply advecting through space. Since ρx is nonzer, the density profile is
spatially varying. This would occur, for example, if water whose sality is increasing over
time flows at constant velocity through a pipe. Water becomes less dense as its sality
increases, so ρt < 0.

(c) Show that the situation can actually occur by finding ρ and u such that the term is iden-
tically zero in the region x, t ∈ [0, 1] while the other two terms are nonzero throughout
the entire region.

The profile ρ = x + 1, u = 1
x+1

makes only the first term vanish. The profile ρ = t + 1

and u = −x+1
t+1

makes only the second term vanish. The profile ρ = x − t + 2 and u = 1
makes only the third term vanish.

3. In this sequence of problems, we will construct a kernel function W (x, h) for use in the SPH
method in 1D, 2D, and 3D.

(a) Since we would like W (x, h) to be symmetric about the origin, we take W (x, h) =
cd(h)f(‖x‖/h), where cd(h) is a normalization factor that depends on the dimension d
and the radius of influence h > 0. The function f(r) need not be defined for r < 0. Find
c1(h), c2(h), and c3(h). (Hint: Use polar coordinates in 2D and spherical coordinates in
3D.)

For 1D, we have

1 =

∫RW (x, h)

= 2

∫

∞

0

c1(h)f

(

r

h

)

dr

= 2c1(h)

∫

∞

0

f

(

r

h

)

dr

= 2c1(h)

∫

∞

0

f(u)hdu

c1(h) =

(

2h

∫

∞

0

f(r) dr

)

−1
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For 2D, we have

1 =

∫R2

W (x, h)

=

∫ 2π

0

∫

∞

0

rc2(h)f

(

r

h

)

dr dθ

= c2(h)

∫

2π

0

dθ

∫

∞

0

rf

(

r

h

)

dr

= 2πc2(h)

∫

∞

0

rf

(

r

h

)

dr

= 2πc2(h)

∫

∞

0

huf(u)hdu

c2(h) =

(

2πh2

∫

∞

0

rf(r) dr

)

−1

For 3D, we have

1 =

∫R3

W (x, h)

=

∫ 2π

0

∫

π

0

∫

∞

0

r2 sin φ c3(h)f

(

r

h

)

dr dφ dθ

= c3(h)

∫ 2π

0

dθ

∫

π

0

sin φdφ

∫

∞

0

r2f

(

r

h

)

dr

= 4πc3(h)

∫

∞

0

r2f

(

r

h

)

dr

= 2πc3(h)

∫

∞

0

(hu)2f(u)hdu

c3(h) =

(

4πh3

∫

∞

0

r2f(r) dr

)

−1

(b) We would like the radius of influence of the kernel W (x, h) to be h. What conditions
does this place on f(r)?

For any x where ‖x‖ > h, we have W (x, h) = cd(h)f(‖x‖/h) = 0, which means f(r) = 0
if r > 1. For any x where ‖x‖ < h, we have W (x, h) = cd(h)f(‖x‖/h) > 0, which means
f(r) > 0 if 0 ≤ r < 1. One may also take this to mean f(1) = 0 as well, and this will
follow from the continuity requirement if one does not.

(c) We further require that W (x, h) have continuous second derivatives everywhere. What
conditions does the continuity requirement place on f(r)? Be sure the kernel also satisfies
this continuity requirement at the origin. (Hint: it is sufficient to look at 1D with h = 1.)

This certainly requires f(r) to have a continuous second derivative everywhere. W (x, 1) =
cd(1)f(|x|). Since cd(1) is a constant, it will not affect discontinuity and can be ignored.
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Since f(r) is already assumed to have continuous second derivatives f(|x|) also will ex-
cept possibly at x = 0.

lim
x→0+

d

dx
f(|x|) = lim

x→0+

d

dx
f(x) = f ′(0)

lim
x→0−

d

dx
f(|x|) = lim

x→0+

d

dx
f(−x) = −f ′(0)

Since −f ′(0) = f ′(0), we need f ′(0) = 0. (If this is not done, the kernel will come to a
sharp “point” at the origin.)

lim
x→0+

d2

d2x
f(|x|) = lim

x→0+

d2

d2x
f(x) = f ′′(0)

lim
x→0−

d2

d2x
f(|x|) = lim

x→0−

d2

d2x
f(−x) = f ′′(0)

The second derivatives are already continuous.

(d) Find a suitable piecewise cubic function f(r) defined for r ≥ 0 that satisfies all of these
requirements.

Since f(r) has continuous second derivatives at r = 1, and f(r) is identically zero for
r > 1, it follows that f(1) = f ′(1) = f ′′(1) = 0. Along with f ′(0) = 0, this is four
constraints. If a single cubic were used for 0 ≤ r < 1, then it must be that cubic is 0,
which is not suitable. Thus, we will need to use (at least) two cubics to cover this region.
The location of the transition between the two must be between 0 or 1, but it is otherwise
somewhat arbitrary. We will choose 1

2
.

f(r) =











a3r
3 + a2r

2 + a1r + a0 0 ≤ r < 1

2

b3r
3 + b2r

2 + b1r + b0
1
2

< r < 1
0 r ≥ 1

The constraints f(1) = f ′(1) = f ′′(1) = 0 and f ′(0) = 0 simplify this to

f(r) =











a3r
3 + a2r

2 + a0 0 ≤ r < 1
2

b3(1 − r)3 1

2
< r < 1

0 r ≥ 1

Continuity of f
(

1
2

)

, f ′

(

1
2

)

, and f ′′

(

1
2

)

yield the constraints 1
8
a3 + 1

4
a2 + a0 = 1

8
b3,

3
4
a3 + a2 = −3

4
b3, and 3a3 + 2a2 = 3b3. Solving these gives

f(r) =











6a0r
3 − 6a0r

2 + a0 0 ≤ r < 1
2

2a0(r − 1)3 1
2

< r < 1
0 r ≥ 1

Since we must normalize this function anyway, choose a0 = 0.

f(r) =











6r3 − 6r2 + 1 0 ≤ r < 1
2

2(1 − r)3 1
2

< r < 1
0 r ≥ 1
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(e) Evaluate c1(h), c2(h), and c3(h).

∫

∞

0

f(r) dr =

∫ 1

2

0

6r3 − 6r2 + 1 dr +

∫ 1

1

2

2(1 − r)3 dr

=

[

3

2
r4 − 2r3 + r

]
1

2

0

+

[

−
1

2
(1 − r)4

]1

1

2

=
3

32
−

1

4
+

1

2
+

1

32
=

3

8

c1(h) =
4

3h

∫

∞

0

rf(r) dr =

∫ 1

2

0

6r4 − 6r3 + r dr +

∫

1

1

2

2r(1 − r)3 dr

=

∫ 1

2

0

6r4 − 6r3 + r dr +

∫ 1

2

0

2(1 − r)r3 dr

=

∫ 1

2

0

4r4 − 4r3 + r dr

=

[

4

5
r5 − r4 +

1

2
r2

]
1

2

0

=
1

40
−

1

16
+

1

8
=

7

80

c2(h) =
40

7πh2

∫

∞

0

r2f(r) dr =

∫ 1

2

0

6r5 − 6r4 + r2 dr +

∫ 1

1

2

2r2(1 − r)3 dr

=

∫ 1

2

0

6r5 − 6r4 + r2 dr +

∫ 1

2

0

2(1 − r)2r3 dr

=

∫ 1

2

0

8r5 − 10r4 + 2r3 + r2 dr

=

[

4

3
r6 − 2r5 +

1

2
r4 +

1

3
r3

]
1

2

0

=
1

48
−

1

16
+

1

32
+

1

24
=

1

32

c3(h) =
8

πh3
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